AD-A132 934 INVESTIGATION OF INTRINSICALLY ERROR-FREE PROGRAMS(U}
COMPUTER SYSTEM ASSOCIATES SAN DIEGO CA
G V WINTRISS ET AL. 27 JUL 83 ARO-18465.1-EL-S
UNCLASSIFIED DAAG29-81-C-002t F/G

g AR A

Il

e

iz |

PTECEE
EEEE
EEE

rrrege
r
o

==
o

B
=
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 196 4

AD-A32 734

INVESTIGATION OF

. ARO 19465, /-5

DEPARTMENT OF THE ARMY
U. S. ARMY RESEARCH OFFICE

P. 0. 80X 12211

RESEARCH TRIANGLE PARK MORTH CAXKOULINA 27709

INTRINSICALLY ERROR-
FREE PROGRAMS

FINAL REPORT

o~
Q.
QO
(-
tad
=
=
<2
B

Approved for Public Release,

Distribution Unilimited.

27 ALY 1983

LB e
(SEP. 5 1983 4
.(E

“
e ———————
COMPUTER SYSTEM ASSOCIATES
7562 Tracow Stewi San Dveyo CA 92121
Tetephone 566-3911

NDER CONTRACT MaMEER
OAAG-18-8 1-C-002 1

FoOr s

Lo

DEPARTMENT OF THE ARMY
U. 5. ARMY RESEARCH OFFICE
P. 0. 80X 12211
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709

INVESTIGATION OF

INTRINSICALLY ERROR- | |

FINAL REPORT

Approved for Public Release,

Distribution Unlimited.

< el 2ol NI v,

THE VIEW, OPINIONS, AND/OR FINDINGS CON
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE
DEPARTMENT OF THE ARMY POSITION. POLICY,
DESIGNATED BY OTHER DOCUMENTATION,

TA
CON

INED IN THIS REPORT ARE .
ONSTRUED AS AN OFFICIAL ;
OR DECISION, UNLESS SO !

Y W

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE per ZAD INSTRUCTIONS
. UM 2. GOVTY CESSION NOJ). RECIPIENY'S CATALOG NUMBER
3 -
A AT 3

4. TITLE (and Subsitle) v S. TYRE 'OF REPORT & PERIOD COVERED
INVESTIGATION OF INTRINSICALLY Final Report
ERROR-FREE PROGRAMS 0 Apr 81-19 June 83
6. PERFORMING ORG. REPORT NUMBER
(7. AUTHOR(S) %. CONTRACT OR GRANT NUMBER(S)
G. Victor Wintriss Nicholas Panos
Jeannine Wolf Andrew Ash DAAG-29-81-C-0021
Dr. Michael Andrews
5. PERPORMING ORGANTZATION NAME AND AGORESS 0. PROGRAM ELEMENT, PROJECT, TASK |

Computer System Associates AREA & WORK UNIT NuMBERS

7562 Trade Street
San Diego, CA 92121

TH connonﬂ.u&e znnci "m:cf:“ AODORESS) 12. REPORT DATE
- 3. Army Research Office 27 July 198
Post thce Box 12211 1S, m:/uua o%mzs 2
Research Triangle Pari, NC 27709 L5
T ONITORING AGENCY NAME & ACORESS(I! diiferent from Controlling Office) | 15. SECURITY CLASS. (of this report)
Unclassified

TSe. GECL ASSIFICATION/ DOWNGRADING
SCHEDULE

e ———————————
16. OISTRIBUTION STATEMENT (of this Repest)

Approved for

unlimited. Public release: distributinn

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il ditferent from Report)

18. SUPPLEMENTARY NOTES

THE E'W, OPINIONS, AND/CR FINDINGS CONTAIMED IN THIS REPOAT

A7 1T 75 OF THE AUTHOR(S) AND SHOULD O B8 COMITAUED AG
;7R C AL CEPARTMENT GF THE ARMY 2 21112, ACLICY, € D

CiSIOH, UNLESS SO DISIGNATCI 3V O R SUCTUMENTATION,

(76 ABSTRACT (Cantimue em reverse obde ¥ and dontily by bloek number)

19. KEY WOROS (C. on otege 1 y and | ty by block number)
Finite state machine; automated program generation; error-free
software; state variables; software design; automatic program
synthesis

»The report analyzes the application of machine design techniques to
software development. The techniques of finite state machine
design are extended to software design. The requirements for an
automated programming system are developed and a prototype system
is described.

~

\

\

s U7T3 coimion oF ! wov 313 ossoLETE Unclassified
SECUMTY CLASSIFICATION GF TS PAGK (Wiven Dete Entered)

P

UMCLASSIFIED
SECUMTY CLASSIPICATION OF THIS PAGE(Whan Data Entered)

This Page Intentionally Blank

UNCLASSIFIED

SERCURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

= g e O g g e R b

b
-
F
' TABLE OF CONTENTS “é
I 1. INTRODUCTION 1
1.1 oOverview 1
' 2. BACKGROUND 2
' 2.1 Pinite State Machine Design 2
2.2 The Pinite State Machine Model 2
l 2.3 Synthesis Procedure S
2.4 Application to Software Generation 6
l 3. STATE DIAGRAM PROGRAM GENERATION 9
3.1 Program Overview 9
] 3.2 Primary Menu 9
] 3.3 Instruction Display 10
! 3.4 Definition of the Variables 10
? 3.5 State Diagram Creation 12
’ 3.6 Subroutine ldentification 14
:_ 3.7 Creating the Source Program 15
BIBLIOGRAPHY 17 j
APPENDIX A. Program Implementing Mealy Machine A-1 '
APPENDIX B. Program Implementing Moore Table B-1]
APPENDIX C. State Diagram Program Generator Cc-1
APPENDIX D. Skeleton Program Driver for Program D-1
Generation
.- APPENDIX E. Program Created by State Diagram E-l
b Program Generator
APPENDIX P. List of Publications and Technical F~1
I Reports and List of Participating

Scientific Personnel

LIST OF FIGURES
FIGURE 1. Generalized block diagram of circuit
implementation of Mealy and Moore
type finite state machine
FIGURE 2(a). Example of a Mealy type state table

FIGURE 2(B). The Moore table corresponding to the
table in Figure 2(a)

ii

= e S

B o e T g~

A QUERY BASED AUTOMATIC PROGRAMMING SYSTEM

BASED ON FINITE STATE MACHINE DESIGN

1. INTRODUCTION

l.1 Overview

The theoretical basis of finite state machine synthesis was
developed originally by G.H. Mealy (21), building on the work of
D.R. Huffman (15) and F.E. Moore (22). The objective of Mealy's
research was to develop a formal method of synthesis to replace
the intuitive approach commonly used. The systematic approach
enables the designer to formulate an unambiguous statement of
performance requirements which can then be translated into the
completed design by following a sequence of quasi-algorithmic
steps. The procedure imposes a useful discipline on the
designer; namely, the process cannot proceed until the function
of the circuit has been completely described in the form of a
state transition table (hereafter simply called the state table).
The conciseness of the state table yields obvious benefits in the
documentation of the design. The algorithmic nature of the
implementation procedure lends itself to automation on a computer
(12) . This paper describes an effort to extend these benefits to
program design. The approach used here is to have the user
submit the state table to an automated implementation procedure
generator (a program generator). The result produced is a

control program which directs execution to the proper subroutine

for each state transition. The procedure supports modular

WY e Smaaa o

B e

program development because it can be applied to the development

of the subroutines as well.

2. BACKGROUND

2.1 PFinite State Machine Design

The origins of finite state machine design can be traced to
the efforts of practicing engineers to add rigor to the design of
sequential circuits. Originally conceived as an aid to circuit
design, the basic synthesizing method has been generalized and
extended to apply to any finite-state machine (1¢, 12, 16, 249,
25, 26, 28). The method is now commonly used to analyze and/or
synthesize many types of systems in communications, process
control, data processing, electronics, and other applications.

The applicability of these concepts to software design has
long been recognized (1, 5, 8, 17, 24). The applicability is
confined to those processes which operate sequentially. In fact,
many programs are not sequential, in the sense that any attempt
to develop a state table yields a table which collapses to a
single state. This is, of course, a truth table, and (to press
the analogy further) such a program corresponds to a

combinational circuit.

2.2 The Finite State Machine Model

Reference 11 provides a more rigorous mathematical
formulation of a finite state machine. The purpose here is to
provide an informal basis for the development of the application
of the techniques to program generation.

The finite state machine, in its general form, can be

represented as a black box with a fixed number of time-~dependent

f

input and output variables. At time intervals signaled by a
synchronizing source (called the clock), the input variables are
sampled and the next appropriate response is generated at the —y
outputs. The circuit differs from a combinational circuit 1in
that the outputs depend on the past history of the input
variables. To achieve the proper response to a sequence of input

values, the machine contains memory cells, which have stored in

them pertinent information about the previous sequence of input

values, The status of these memory cells at any given time is

call the STATE of the machine, By tagging input sequences with
certain state numbers, the machine "remembers"™ the input
sequence. To determine the correct output for the machine, it is
sufficient to know the current state of the machine and the
current value of the input variables. For a given state, an
input to the machine generates an output and causes a transition
- to the next state.
Figure 1 shows the generalized block diagram of a finite

state machine. The memory cells store the present state. The

combinational 1logic computes the next state and the present

outputs.

,'| COMBINATIONAL : MOORE
7

I LOGIC ' OUTPUTS

INPUTS S '| COMBINATIONAL L MEALY
LOGIC OUTPUTS

,I]
!

. MEMORY

PRESENT | CELLS | NEXT
STATE | . [STATE
FIGURE 1. Generalized block diagram of circuit

implementation of Mealy and Moore type finite state machine.

There is a slight difference in the generation of the output
in the two types of machine as described by Mealy and by Moore.
In the Mealy model, the current output value depends on the
current state as well as the current input of the machine. In
the Moore model, the current output depends only on the current
state of the machine. For both, the next state transition
mechanism is the same. The Mealy machine version never has more
states than the corresponding Moore implementation, but this
advantage comes at the expense of spurious output pulses caused
by the need to have an output circuit respond to simultaneous
input and state variable changes. With care, the Moore machine
can be designed so that outputs are derived directly from memory
cells, and thus these outputs can be made free of spurious
pulses. However, the outputs in the Moore machine are delayed by
one clock period, compared to the Mealy implementation of the
same function.

Figure 2(a) shows a typical Mealy state table. Figure 2(b)

is the corresponding Moore table for the same function (reference

14 describes how to perform Mealy/Moore table translations).

N
| ¢
X
-
|
|
1
|

[
.

FIGURE 2(a).
An example of a MEALY
type state table.

PRES. | _INPUT

STATE ’E‘TEE’E‘
134413
21344114
312338])2
41775511 FIGURE 2(B).
5177554 The MOORE table
61775 5\5 corresponding to the
71136611 table in Figure 2(a).
8l13661{6

———NEXTTTETE[OUTEUT

2.3 Synthesis Procedure

Once the state table has been formed, the following
procedure {s used to achieve a <circuit realization. (This
procedure implements the structure of Figure 1 in that it
segregates the circuit into a sequential part, implemented by
memory cells, and a combinational logic section. Thus the
solution is ultimately reduces to a set of Karnaugh maps
depicting the combinational circuit, which provide the next state
conditions for the memory cells.)

1. Minimize the number of states, i.e., eliminate redundant
states from the table.

2. Assign a unique binary code to each state. This step
begins the process of converting the symbolic state table to a
binary circuit implementation. This step is referred to as state
assignment.

3. Refine new binary codes to redefine the state entries in

the form of binary excitations applied to memory cell inputs.

PRETOUSEEE

4. Transfer the excitation table entries to memory cell
input Karnaugh maps.

5. Derive memory cell input equations. These equations
embody the circuit implementation.

The details of this synthesis procedure are described in any

good textbook on logic design (9, 14). These Qdetails are not

considered here because the primary goal of circuit design is to
minimize circuit component count, whereas the program generator
has broader objectives, namely, concise documentation, the
production of unambiguous, error-free code, and the

standardization of the program development phase.

2.4 Application to Software Generation

In order to understand the application of the finite state
machine model to program generation, we must first identify those
mechanisms of the program which are analogous to the machine's
synchronizing source, and the machine's inputs and outputs.

Interestingly, the synchronizing source could be implemented
by either a real time clock which causes a periodic interrupt, or
by a wvariable period default "clock"™ which corresponds to the
execution time of the system program loop. A good example of a
predetermined sampling period is a computer's real time
multitasking operating system, in which a periodic interrupt
(e.g., every 10 microseconds) takes the system to a task
selection routine (23).

In the program generator application, the inputs are defined

variously, ranging from real time binary input variables,

monitored through a parallel input port, to complex system

T "*""'“"""'"==Illllllll-l------............____'_“

conditions, analyzed and coded by a separate input subroutine.

Outputs can range from binary output signals appearing on
parallel output ports, to system tasks implemented in subroutines
or interrupt service routines.

The implications for program generation of the Mealy/Moore
dichotomy center on convenience factors rather than circuit
considerations. For example, the Mealy approach would seem to be
appropriate when the number of states is to be minimized and/or
when a system 1is task intensive, because in a Mealy
implementation, the state table can contain fewer states than
tasks. This advantage might be offset, however, by the fact that
the Mealy model requires two matrices to be stored, one for the
next state transitions, the other for the tasks. The Moore model
has the advantage that is is easier to catalog the states and
tasks, because each state is associated with a task, whereas the
Mealy table associates a number of tasks with each state,
corresponding to each of the input conditions.

The procedure for going from state table to implementation,
outlined in section 2.3, has minimal applicability to the problem
of program generation. The reason is that this procedure becomes
unwieldy when applied to large state tables. Most practical
software systems will contains hundreds, or even thousands, of
states. For example, the sewing machine controller in reference
18 has 235 states.

The programs in appendices A and B, written in BASIC,

demonstrate some of the concepts just discussed, including the

difference between Mealy and Moore Iimplementations. These

«

"

programs implement the state tables presented in Figqure 2. In
both programs, lines 409 through 70@ form the program loop, and
thus define the software "clock™ period. Notice also that in the “+
Mealy version, the determination of the next state is postponed

until after the required task is executed.

e ey B

—— e o Sam UER =T

3. STATE DIAGRAM PROGRAM GENERATOR

3.1 Program Overview

The purpose of the State Diagram Program Generator 1is to
provide a vehicle for developing computer programs which can be
defined with finite state machine techniques. The program builds
a table of user-designated names for program variables and their
meanings. It then builds a state diagram table with cells for
each state, resulting from each permutation of the variables for
that state. When the state diagram has been created, the user is
asked to enter the 1identifier of the subroutines/modules
associated with each state. The user is expected to have a
library of pre-coded modules and/or subroutines which perform the
processing for the various states, With the user's subroutine
library and the tables produced by the previous functions, the
program creates a source code program which contains a state
diagram driver and the user's routines. The program described
in éhis paper and listed in Appendix C is a prototype version
developed to demonstrate the feasibility of the technique, It
is written in CBasic for operation on the CP/M operating system.
(CBasic and CP/M are registered trademarks of Digital Research.)
The only customization regquired for various processors is
modification of the screen clear command for the user's terminal,

which is specified in the data definition section of the program.

3.2 Primary Menu

The program has a menu which is displayed each time the

program is invoked and each time a step is completed. The menu

display asks the user to select one of the program's basic

functions:

1) instruction display

2) variable (state vector) definition

3) state diagram specification

4) subroutine identification

5) source program creation

6) session termination

If the user enters an invalid response, the menu is

redisplayed; otherwise program control is transferred to the
specified function. When the function processors return control
to the menu processor, they set status and error messages which
become part of the menu display.

3.3 Instruction Display

When the user selects this option, a brief description of
each function 1is displayed. The information remains on the
screen until the user returns to the primary menu display by
pressing the Return key.

3.4 Definition of the variables

This portion of the program allows the user to describe the
variables that will be used in the state table.

The user is asked if a predefined set of variables should be
used. If the response is affirmative, the user is prompted for
the name of the file where the set is stored. If the file is not
found, an error message is displayed and the user is again asked
if a predefined set of variables should be used. When a valid
file name is entered, the data in the file is read into the
varlist array and the variable specification step is skipped.

If the user does not want to use a pre-defined set of
variables, the program prompts the user for information about

each variable, A sample dialog follows, with user entries in

19

el

boldface.
WHAT IS THE NAME OF VARIABLE 1?
master switch
WHAT DOES 8 MEAN FOR MASTER SWITCH?
off
WHAT DOES 1 MEAN FOR MASTER SWITCH?

on
WHAT IS THE NAME OF VARIABLE 2?2

The user's responses are entered into the Varlist array. Each
item in the array contains the user's name for the variable, and
the names assigned to the # and 1 states.

When the vVvarlist array has been filled in from user
responses or from a pre-defined file, the user is asked if a
display of the variables and their definitions is wanted. If the
answer 1is vyes, the permutations of all of the variables are
output in the user's terminology. For example, one value of the
state vector might be displayed as:

Master Switch = On
Safety Switch = Off

Target Status = Inactive
Damage Assessment = Neutralized

Vector 9

[N~ N -~

This display (and others) can be printed by entering the CP/M
print toggle command (Control-P).

The user 1is then asked if the current set of wvariable
definitions should be saved for use in another program run. If
the answer is yes, the user is asked to specify a file name. If
the file already exists, the user is given the choice of
replacing the existing file or of specifying another file name.

In the final step of the variable definition process, the
program sets the variable definition flag, sets up a status
message ("Variable Definition Completed®™) for display on the

menu, and returns control to the primary menu.

11

e — e .

3.5 State Diagram Creation

The state diagram creation step determines if a state
diagram defined in a previous session should be used, solicits
state names for new diagrams, guides the user in specifying what
action should be taken for each permutation of the state vector,
displays the resulting state diagram, and provides an option to
save the diagram for use in a subsequent program run.

The processor checks the variable definition flag to ensure
that the user has already performed the variable definition step.
If it is off, an error message is set up for display on the menu
and control is returned to the primary menu processor.

If the variables have been defined, the user is asked if a
predefined state diagram should be used. If so, the user is
prompted for the name of the file where the diagram is stored.
If the file is not found, an error message is displayed and the
user is asked again {f a predefined diagram should be used. Wwhen
a valigd file name is entered, the data in it is read into the
Diagram array and the user is asked to specify which state is the
initial program state when the target program starts executing.
The state definition phase is skipped.

When a new state diagram is being built, the user is asked
to enter the name of each state and to specify which state is the
initial program state for the target program. The user is then
asked if there are any general input conditions that apply to all
states, If, for example, control always passes to the same state
whenever the master switch is off, the user could specify this as

a general input condition and thereby eliminate several entries

12

in the next state diagram definition step. If there are general
input variables, the user is asked for the name of the variable,
and for the name of the state processing each value of the D

variable. Checks are performed to validate the variable and

state names and to ensure that there is no conflict with an

action specified for a previously defined general input variable.

The next step asks the user a series of questions for each

I state. First, the user is asked if there are any genecral input
variavles for the state. If there are, the processing is similar

l to that for general variables applying to all states. In cases
of conflict, a general variable result for all states will
J override a result specified for a specific state. Second, the
user is asked to specify the outcome for all state vectors which

have not been predetermined by the general input conditions. A

sample dialog, with user responses in boldface, follows (wait and

restart are names of steps).

YOU ARE IN THE WAIT STATE x
VECTOR = 9 1 MASTER SWITCH = ON |
. @ SAFETY SWITCH = OFF |
@ TARGET STATUS = INACTIVE ,
1 DAMAGE ASSESSMENT = NEUTRALIZED :
WHAT STATE DO YOU WANT TO BE IN NEXT?

» wait
YOU ARE IN THE WAIT STATE
VECTOR = 18 1l MASTER SWITCH = ON

@ SAFETY SWITCH = OFF X

1 TARGET STATUS = ACTIVE f

- @ DAMAGE ASSESSMENT = NOT NEUTRALIZED
WHAT STATE DO YOU WANT TOQ BE IN NEXT? ‘

- restart 1

For each possible value of the state vector within a state,

the user must specify the next processing state, When this has

been completed (or when a previously defined diagram has been

read {in), the user 1s given the option of having the state

13

diagram displayed. The user also has the option of saving the

diagram for use in a subsequent program run.

In the final step of the diagram creation process, the
program sets the diagram build flag, sets up a status message
("State Diagram Completed”) for display on the menu, and returns
control to the primary menu.

3.6 Subroutine Identification

The subroutine identification step gets the name of the
user's subroutine library, scans the library to collect a list of
subroutine labels, asks the user for the label of the subroutine
which 1is to process each state, and displays the resulting
subroutine state diagram.

The function first checks the wvariable definition and
diagram build flags. If either flag has not been set, an error
message Is set up for display on the menu, and control is
returned to the menu processor.

If the variables have been defined and the state diagram has
been created, the user is asked for the name of the subroutine
library to be used in building the target program. The user is
expected to provide a file that includes a subroutine/module for
executing each state specified in the state diagram. The program
scans the library file to build a list of subroutine labels for
subsequent validation routines. Each subroutine/module on the
library must be preceded by a header record with the characters
"REM#" in the first four positions, followed by the subroutine
label.

The user is then prompted for the label of the subroutine to

14

S S A, 4) Y

1 N L Je——) m——— ~ — - -

b
v

be used for each state. If a label is specified which is not on
the library, an error message is displayed. The program uses the
labels entered to build a Juyp table that corresponds to the
Diagram table, substituting labels for state names.

When the subroutine version of the state diagram is
completed, the user is given the option of having it displayed.

In the final step of the subroutine identification process,
the program sets the subroutine identification flag, sets up a
status message ("Subroutine Identification Completed”) for
display on the menu, and returns control to the menu processor.

3.7 Creating the Source Program

The source program creation module uses a special skeleton
driver program to create the source program file. The skeleton
driver is merged with data collected in the previous steps and
with the user's subroutine library to generate the target source
program,

The user is asked for a file name for the new source
program. If the file already exists, the user is given the
option of replacing the file or of specifying another file name.

A standard skeleton control program is used to generate code
for all programs. (It is listed in Appendix D.) Its control
logic examines the the jump table to determine which module
should be called next, based on the current state and the current
condition of the state vector. The control program for the
prototype program expects subroutines to set the values in the
state vector. A real-time program would, of course, examine its
input lines to determine the state vector.

The file containing the skeleton driver program file |is

15

read and each program line is copied to the target source program
file until an "insert®” flag is read. Whenever an insert flag is
found, specific data collected in previous steps is inserted into
the driver program. Insert data includes variables such as the
number of states in the target program and the size of the jump
table, the Jjump table itself, and other application-specific
data.

When all of the inserts have been processed, the user's
subroutine library is appended to the target program source file.
A program created by the State Diagram Program Generator |{s
listed in Appendix E.

In the final step, the program sets up a status message
("Source Program Saved on Disk...") for display on the menu, and
returns control to the menu processor. The user must exit the
State Diagram Program Generator to compile and execute the target

program.

16

DT ey

3.

1o.

11.

12.

13.

14.

BIBLIOGRAPHY

Barnes,B.H. and J.R. Metzner, DECISION TABLE LANGUAGES AND
SYSTEMS, Academic Press, New York, 1977.

Beizer, Boris, THE ARCHITECTURE AND ENGINEERING OF DIGITAL
COMPUTER COMPLEXES, Vol. 1, Plenum Press, New York-London,
1971.

Biermann, Alan W., "Approaches to Automatic Programming,
“ADVANCES IN COMPUTERS, Veol. 15, pp. 1-63, Academic Press,
New York, 1976.

Biermann, Alan W., and R. Krishnaswany, "Constructing
Programs from Example Computation, "IEEE TRANS. ON SOFTWARE
ENGINEERING, Vol. SE~2, pp. 141-153, (Sept. 197A).

Birke, D.M., "State Transition Programming Techniques, and
Their Use 1in Producing Teleprocessing Device Control
Programs, "IEEE TRANS. ON COMMUNICATIONS, Vol., COM-26, No.3,
PP.569-575, (June 1972).

Chow, T.S., "Testing Software Design Modelled by Finite
State Machines, “IEEE TRANS. ON SOFTWARE ENGINEERING, Vol.
SE-4, No.3, p.178, (May 1978).

Clare, <C.R., DESIGNING LOGIC SYSTEMS USING STATE MACHINES,
McGraw-gHill, 1973.

Conway, M,E., "Design of a Separate Transition-diagram
Compiler, "“COMMUNICATIONS OF THE ACM, Vol. 6, pp. 396-498,
(July 1953).

Dietmeyer, Donald L., LOGIC DESIGN OF DIGITAL SYSTEMS, 2nd
ed., Allyn and Bacon, Boston, 1979.

Dolotta, T.A., and E.J. McCluskey, "The Coding of Internal
States of Sequential Circuits, “IEEE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-13, No.5, pp. 549-562, (October 1964).

Gill, Arthur, INTRO. TO THE THEORY OF FINITE STATE MACHINES,
McGraw-Hill, New York, 1962.

Grasselli, A., and P. Luccio, "A Method for Minimizing the
Number of Internal States in Incompletely Specified
Sequential Networks, P®IEEE TRANS. ON ELECTRONIC COMPUTERS,
Vol. EC-14, No. 3, pp. 330-359, (June 1965).

Heidorn, G.E., "Automatic Programming Through Natural
Language Dialogue: A Survey, "IBM J. OF RESEARCH AND
DEVELOPMENT, Vol. 28, pp. 362-313, (July 1976).

Hill, F.J., and G.R. Peterson, INTRO. TO SWITCHING THEORY

17

.
DR A S

X i

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

AND LOGIC DESIGN, 2nd Ed., Wiley, 1974.

Ruffman, D.A., "The Synthesis of Sequential Switching
Circuits,” J. FRANKLIN INST., Vol. 257, No.3, pp.l61-199;
No.4, pp. 275-303, (March-April 1954).

Rarp, R.M., "Some Techniques of State Assignment for
Synchronous Sequential Machines, “IEEE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-13, No.5, pp. 507-518, (October 1964).

King, P.J.H., and R.G. Johnson, Some Comments On the Use of
Ambiguous Decision Tables and Their Conversion to Computer
Programs, “COMMUNICATIONS OF THE ACM, Vol. 16, No.S5, pp.
287-298, (May 1973).

Landau, Jack V., "Hardware Oriented State Description
Techniques, "in D.F. Stout (E4d.), MICROPROCESSOR
APPLICATIONS HANDBOOK, McGraw-Hill, 1982.

Manna, A., and R.J. Waldinger, "Toward Automatic Program
Synthesis, "COMMUNICATIONS OF THE ACM, Vol.l4, pp. 151-165,
(March 1971).

McNaughton, R., and H. Yamada, "Regular Expressions and
State Graphs for Automata, "IRE TRANS. ON ELECTRONIC
COMPUTERS, Vol. EC-9, No. 1, pp. 39-47, (March 1960).

Mealy, G.H., " A Method for Synthesizing Sequential
Circuits, "BELL SYSTEM TECH. J., Vol. 34, No. S, pp. 1845-
1686, (September 1955).

Moore, E.F., "Gedanken Experiments on Sequential Machines, "
in C.E. Shannon and J. McCarthy (Eds.) AUTOMATA STUDIES,
Princeton Univ. Press, Princeton, N,J., 1956.

Motorola, Inc., USERS GUIDE; EXORMACS REAL TIME MULTITASKING
SYSTEM, 1981l.

parnas, D.L., "On the Use of Transition Diagrams in the
Design of a User Interface For an Interactive Computer
System,"PROC. OF THE 24TH NATIONAL CONFERENCE OF THE ACM,
PP.379-385, 1969,

paull, M.C., and S.H. Unger, "Minimizing the Number of
States in Incompletely Specified Sequential Switching
Functions, "“IRE TRANS. ON ELECTRONIC COMPUTERS, Vol. EC-8,
No.3, pPp.356-357, (September 1959).

Robin, M.0., and D. Scott, "Finite Automata and Their
Decision Problems, "IBM J. OF RESEARCH AND DEVELOPMENT,
Vol.3, No.2, pp.114-125, (April 1959).

Slagle, J.R., ARTIFICIAL INTELLIGENCE: THE HEURISTIC

18

o

e g

R e 2 2.

PROGRAMMING APPROACH, McGraw-Hill, New York, 1971.

Problem For Sequential Machines, 11, "IRE TRANS. ON
ELECTRONIC COMPUTERS, Vol. EC-10, No. 4, pp.593-A03,
{December 1961).

28. Stearns, R.E., and J. Hartmanis, "On the State Assignment ‘4

ﬁ
s ess OB O

PO

-

v
[

—se oass S Gy U W

Appendix A

REM APPENDIX A

REM PROGRAM IMPLEMENTING MEALY MACHINE

DIM NXT%<4,3>:REM MATRIX WHICH STORES STATE TRANSITION TABLE
DIM TASKS$<4,3>:REM MATRIX WHICH STORES TASKS <OQUTPUTS>

REM READ
FOR S=1 T
READ X%:N
REM SET U
FOR S=1 T
READ X%:T
REM NEXT
DATA 2,3,
DATA 1,2,
DATA 4,4,
DATA 1,2,
REM TASK
DATA 2,1,
DATA 4,2,
DATA 1,1,
DATA 3,2,
PRES8=1:R
PRINT"STA
GOSUB 94¢
TSK$=TASK
ON TSK% G
PRES$=NXT
REM DUMMY
PRINT" TSK
PRINT" TSK
PRINT" TSK
PRINT® TSK
PRINT" TSK
PRINT" TSK
READ INP%
GET PS:IF
RETURN
REM INPUT
DATA 3,0,

IN STATE TABLE
O 4:FOR 1= TO 3
XT$<S,I>=X%:NEXT 1
P TASK ARRAY
O 4:FOR 1=9 TO 3
ASK$<S,1>=X%:NEXT 1:NEXT S
STATE MATRIX
3,1
2,4
3'3
3,3
MATRIX
1,3
2'6
4'“
5,5
EM START IN STATE 1
TE®" PRESS%;
g:REM GO TO INPUT SUBROUTINE
3<PRES%, INP%>
OSsuB 1000,2000,3000,4000,5000,f000
3<PRES%, INP%>: PRINT" STATE"PRES%; :GOTO 420
TASK SUBROUTINES
1"; :RETURN
2" ; :RETURN
3"; :RETURN
4" ; :RETURN
S*; : RETURN
6" ; : RETURN
:PRINT® INPUT" INPS:IF INP%=1 THEN PRINT"DONE" :END

:NEXT S

PS="" THEN 90@3:REM HIT ANY KEY TO PROCEED TO NEXT TASK

SEQUENCE TO VISIT ALL NEXT STATE ENTRIES ON STATE TABLE

1,2,0,1,2,3,1,1,3,0,2,0,2,0,3,-1

et aeme Gmw ey e Gy s G S

a—

»

APPENDIX B

REM APPENDIX B

REM PROGRAM IMPLEMENTING MOORE TABLE

DIM NXT$<8,7>:REM MATRIX WHICH STORES STATE TRANSITION TABLE
FOR S=1 TO 8:FOR 1=9 TO 3:REM READ IN STATE TABLE

READ X$:NXT$<S,1l>=X%

NEXT 1:NEXT S

REM NEXT STATE MATRIX

DATA 3,4,4,1

DATA 3
DATA 2
DATA 7
DATA 7
DATA 7
DATA 1
DATA 1
PRES$=1:REM START IN STATE 1

GOTO 600

GOSUB 9000:REM GO TO INPUT SUBROUTINE
PRES$=aNXTS$<PRES%, INPS> :REM GET NEXT STATE

ON PRES% GOSUB 10¢¢,200a,300d,4000,5000,6000,7000,8000
GOTO 409

REM DUMMY TASK SUBROUTINES

o = JV IV NV R -

- % % W% W ae

14
14
’
’
4
[4
’

PRINT"STATE 1 TSK 3"; :RETURN
PRINT"STATE 2 TSK 4"; :RETURN
PRINT*STATE 3 TSK 2";:RETURN
PRINT®*STATE 4 TSK 1";:RETURN
PRINT"STATE S TSK 4"; :RETURN
PRINT"STATE 6 TSK 5"; :RETURN
PRINT®"STATE 7 TSK 1"; :RETURN
PRINT®"STATE 8 TSK 6"; :RETURN

REM THE INPUT SUBROUTINE

READ INP%:PRINT" INPUT" INP%:IF INP%$=1 THEN PRINT"DONE":END

GET PS:IF PS="" THEN 90@3:REM HIT ANY KEY TO PROCEED TO NEXT STATE
RETURN

REM INPUT SEQUENCE TO VISIT ALL NEXT STATE ENTRIES ON STATE TABLE
DATA 3,0,1,2,0,3,1,2,2,3,4,0,2,1,3,1,2,04,1,3,1,3,2

DATA 2'11113'3'3'0'1(0,0'3'0!110'1101113'111'0'2'-1

AWy

]

APPENDIX C

A AR R AR R 22222222222 2222 2222222222222 X222 L R X222 1

REM* PROGRAM: STATE DIAGRAM PROGRAM GENERATOR * ~
REM* AUTHOR: JEANNINE WOLF, COMPUTER SYSTEM ASSOCIATES *

' REM* CONTRACT: ARMY RESEARCH ORGANIZATION DAAG-29-R1-C-g@21 *
REMA A R ke R A A AR AR R R R R AR R AR R RN R AR AR R AR AR AR AR AR A AR R R AR AR bR

100 13X LA AR R AR RS2 2222 2 a2 22 22 2 2 R i 2 d2 2 22 X2 22222 XXX 2 22222 220}

REM® DATA DEFINITION AND INITIALIZATION * (
i AR AR R AR AR 22 AR 22 2 2 2 R X222 22 2 2222222222222 2222220) !
ONg=-1]
OFF3$=4
PROG . RUN$=0N3%
MAX.VARSY=8 -
MAX.STATESS=10
! MAX.SUB.LABELS%=500
SUB.HEADS="REM#"
STATUS .MSGS=""
SPACES=" "
NULLS=""
JUMP. TBL.SIZE$=2"MAX.VARS$+]
DEFINE.VARS$=0FF%
BUILD.STATEY=OFF%
IDENTIFY.SUBS3=0OFF%
SCREEN.CLEARS=CHRS (30) +CHRS (26)
HYPHENSS="- "
DIM VARLISTS (MAX.VARSS, 3) |
DIM DIAGRAMS (MAX.STATESS,JUMP.TBL.SIZES) ;
DIM JUMPS (MAX.STATESS,JUMP.TBL.SIZE%) f
DIM SUBIDS (MAX.SUB.LABELS%)

o

2000 3 LA XA R AR 2222222222 22 2222222222222 YR YL L L 2

REM#* MAINLINE PROCESSOR *
3L B RS E R R IR 2R A PR R L R R N Y T Y P T T)
IF PROG.RUN$=QOFFs% THEN GOTO 99040@

! PRINT SCREEN.CLEARS

PRINT

PRINT

PRINT

PRINT

PRINT TAB(25) ;"DISPLAY INSTRUCTIONS"

PRINT

PRINT TAB(25) ;“DEFINE VARIABLES"

PRINT

PRINT TAB(2S);"BUILD STATE DIAGRAM"

PRINT

PRINT TAB(25);"IDENTIFY SUBROUTINES"

PRINT

PRINT TAB(25) ;"CREATE SOURCE PROGRAM"

PRINT

PRINT TAB(25);"EXIT SESSION"

PRINT

PRINT STATUS.MSGS

STATUS .MSGS=""

PRINT

PRINT

PRINT "SELECT OPERATION (ENTER 2 OR MORE CHARACTERS)"
PRINT

INPUT FUNCTIONS

IF LEFTS (FUNCTIONS,2)="DE" THEN GOSUB 200¢0

IF LEFTS(FUNCTIONS,2)="BU" THEN GOSUB 3¢da¢

IF LEFTS (FUNCTIONS,2)="ID" THEN GOSUB 468400

IF LEFTS(FUNCTIONS,2)="CR"” THEN GOSUB 560@0

IF LEFTS(FUNCTIONS,2)="DI" THEN GOSUB 94080

IF LEFTS(FUNCTIONS,2)="EX" THEN PROG.RUN%=0FF%

GOTO 2060 \RESUME DISPLAY UNLESS END

J

' 20000 o e R R R T R L Ty L L e R R e Y 2 2 il

REM#* 29000 - DEFINE VARIABLES »
a2 R R IR 2SI LS L LY e Y Y P T e 2 .
REM VROW=VARIABLE LIST ROW INDEX

l REM VCOLS=VARIABLE LIST COLUMN INDEX
REM NCOL$=NAME COLUMN FOR VARIABLE LIST
NCOLg=1

l NR.VARS%=9
PRINT SCREEN.CLEARS
PRINT
PRINT

l PRINT TAB(25) ;"DEFINE VARIABLES"
PRINT

21000 REM*#wa#waawsx###SEE IF EXISTING FILE SHOULD BE USED**###sassnss
PRINT "DO YOU WANT TO USE A PRE-DEFINED SET OF VARIABLES? (Y/N)"
INPUT TEMPS
IF TEMPS="N®" THEN GOTO 22040
PRINT “"ENTER THE FILE NAME FOR THE VARIABLE SET"
INPUT VAR.FILE.NAMES ,
IF SIZE(VAR.FILE.NAMES)=@ THEN \ '
PRINT "##*#NO FILE FOR ";VAR.FILE.NAMES :\
GOTO 21000 4
OPEN VAR.FILE.NAMES AS 1
. FOR VROWS=1 TO MAX.VARS$
FOR VCOL$=l TO 3
READ #1; VARLISTS (VROWS,VCOL%)
IF END #1 THEN 21940 :
NEXT VCOL%
NEXT VROWS ;
NR.VARS%=MAX.VARS$ s
2190¢ IF NR.VARS$=@ THEN NR.VARS$=VROW$-1
CLOSE 1
GOTO 25000

22000 REM**#####%##*#**SOLICIT VARIABLE NAMES AND MEANINGS*#%####sa#ssansss
PRINT
PRINT "YOU WILL BE ASKED THREE QUESTIONS ABOUT EACH STATE VARIABLE."
PRINT "PRESS RETURN TO END THE DIALOG"
PRINT
FOR VROWR=1 TO MAX.VARS%
PRINT "WHAT IS THE NAME OF VARIABLE ";VROWS
INPUT LINE VAR.NAMES
IF VAR.NAMES$=NULLS THEN \
NR.VARS2aVROWS-1 :\
GOTO 25009
VARLISTS (VROWS ,NCOL%) =VAR.NAMES |
PRINT "WHAT DOES @ MEAN FOR "; VARLISTS (VROWS,NCOLS) 1
INPUT VARLISTS (VROWS,2) ;
PRINT "WHAT DOES 1 MEAN FOR "; VARLISTS (VROWS,NCOL$) |
INPUT VARLISTS (VROWS,3)
NEXT VROWS

c-3

25009

27000

27100

27500

29000

29999

NR.VARSYsMAX.,VARS%

REM* * A # 2 a %442 ¥4 A *2DRINT THE MEANING OF EACH VECTOR®A* A tdtarattdddtds
PRINT "DO YOU WANT TO PRINT THE VARIABLES AND DEFINITIONS? (Y/N)*
INPUT TEMPS
IF TEMPS="N" THEN GOTO 27000
FOR VAL.LOOPS=1 TO 2°"NR.VARS%
VECTORSsVAL,LOOPS-1
MASKS= (2°NR,.VARS%) /2 REM INITIALIZE VECTOR BIT MASK
PRINT
PRINT "VECTOR" ; VECTORS;
FOR VROWS=1 TO NR.VARS%
RESULTS$=VECTORS AND MASK$%
IF RESULTS = @ THEN \
VCOLg=2 \
ELSE \
RESULTS=1 :\
VCOL%=3
MASK$=MASKS/2 REM RESET MASK FOR NEXT BIT POS
PRINT TAB(15) ;RESULT%; VARLISTS (VROWS,NCOL%);"="; \
VARLISTS (VROWS, VCOL%)
NEXT VROWS
PRINT
NEXT VAL.LOOPS%
PRINT
INPUT "PRESS RETURN TO CONTINUE";LINE TEMPS

REM** 422 %2 ##%4OPTION TO SAVE VARIABLES ON DISKEWR*Ratadhtthhrtrthndid
PRINT "DO YOU WANT TO SAVE THIS SET OF VARIABLES? (Y/N)"
INPUT TEMPS
IF TEMPS$="N" THEN GOTO 29428
PRINT "ENTER THE FILE NAME FOR THIS VARIABLE SET"
INPUT VAR.FILE.NAMES
IF SIZE(VAR.FILE.NAMES)=@¢ THEN GOTO 2754¢
PRINT "DO YOU WANT TO REPLACE THE CURRENT ";VAR.FILE.NAMES;"? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 2714@
CREATE VAR.FILE.NAMES AS 1
FOR VROWS=1 TO NR.VARS%

FOR VCOL$=1 TO 3

PRINT #1; VARLISTS (VROWS,VCOL%)

NEXT VCOLS$
NEXT VROWS%
CLOSE 1

REMR AR R 242 R * N2 XA WRAP-UP PROCESSINGRAX A AN AR AR RA RN Sk AAA R rAR

IF NR.VARSS > @ THEN DEFINE.VARS%=0ON%
STATUS.MSCS = "***VARIABLE DEFINITION COMPLETED"
RETURN

e m—— -y

31000

31100
31200

33000

b3 LA A SRR LR A2 R R 2R R R 22 2 X2 22222 22222222 222222 22 XX]

REM* 30000 - BUILD STATE DIAGRAM *
YL R T T L R R P T T T P T T T Y
REM DROWS=STATE DIAGRAM ROW INDEX

REM DCOL%=STATE DIAGRAM COLUMN INDEX

REM VROWS=VARIABLE LIST ROW INDEX

REM VCOL%$=VARIABLE LIST COLUMN INDEX

REM NCOL$=NAME COLUMN FOR BOTH STATE DIAGRAM AND VARIABLE LIST
NCOL$=1

NR.STATESS=0

IF DEFINE.VARS$=0FF% THEN GOTO 39954

REM#*## %42+ 4GEEF IF EXISTING FILE SHOULD BE USED #**%*daxswddhdsn
PRINT "DO YOU WANT TO USE A PRE-DEFINED STATE DIAGRAM? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 33000
PRINT "ENTER THE FILE NAME FOR THIS STATE DIAGRAM"
INPUT DIAGRAM.FILE.NAMES
IF SIZE(DIAGRAM.FILE.NAMES)=0 THEN \
PRINT "***NO FILE FOR ";DIAGRAM.FILE.NAMES :\
GOTO 31000
OPEN DIAGRAM.FILE.NAMES AS 1
FOR DROWS=1 TO MAX.STATESS
FOR DCOL$=1 TO 2°NR.VARS%+1
READ #1; DIAGRAMS (DROWs,DCOL%)
IF END #1 THEN 31100
NEXT DCOL%
NEXT DROW%
NR.STATES%=MAX.STATESS
IF NR.STATES%=@ THEN NR.STATES§=DROWS-1
CLOSE 1
PRINT "WHICH STATE IS THE INITIAL PROGRAM STATE?"
INPUT INITIAL.PROG,.STATES
MATCHS=0OFF% REM VALIDATE STATE NAME
FOR DROWS%=]1 TO NR.STATES%
IF DIAGRAMS (DROWS,NCOL%)=INITIAL.PROG.STATES THEN \
MATCH3=DROWS
NEXT DROW%
IF MATCHS$=0OFF% THEN \
PRINT "###".INITIAL.PROG.STATES;" IS NOT A VALID STATE" :\
GOTO 31200
GOTO 35069

REM #*#*#SOLICIT STATE NAMES AND GENERAL VARIABLES*#W*#tewdtatdts
PRINT SCREEN.CLEARS

PRINT

PRINT

PRINT

PRINT TAB(25);"BUILD STATE DIAGRAM"

PRINT

PRINT "YOU WILL BE ASKED FOR THE NAME OF EACH STATE."

PRINT "PRESS RETURN TO END THE DIALOG"

C-5

33100

33200

33300

33409

PRINT
NCOLg§=1
FOR DROW$=1 TO MAX.STATESS
PRINT "WHAT IS THE NAME OF STATE "; DROW%
INPUT LINE STATE.NAMES
IF STATE.NAMES$=sNULLS THEN \
NR.STATES$=DROWS-1 :\
GOTO 331460 \
ELSE \
DIAGRAMS (DROWS ,NCOL%)=STATE.NAMES
NEXT DROWS
NR.STATES%=MAX.STATESS
PRINT "WHICH STATE IS THE INITIAL PROGRAM STATE?"
INPUT INITIAL.PROG.STATES
MATCHS=0OFF% REM VALIDATE STATE NAME
FOR DROWS=1 TO NR.STATES%
IF DIAGRAMS (DROWS,NCOL%)=INITIAL.PROG.STATES THEN \
MATCHS=DROW%
NEXT DROWS
IF MATCHS=0FF% THEN \
PRINT "##%*".INITIAL.PROG.STATES;" IS NOT A VALID STATE" :\
GOTO 33140
PRINT "ARE THERE ANY GENERAL INPUT CONDITIONS THAT APPLY TO ";
PRINT "ALL STATES? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 34040
PRINT "WHICH VARIABLE?"
INPUT LINE TEMPS
IF TEMPS=NULLS THEN GOTO 34000
MATCHS$=OFF$ REM CHECK FOR VALID VARIABLE
FOR VROWS=1 TO NR.VARSS
IF VARLISTS (VROWS,NCOL%)=TEMPS THEN MATCH%=VROW% i
NEXT VROWS i
IF MATCH%=0FF% THEN \ I
PRINT "##*#%,.TEMPS;" IS NOT A VALID VARIABLE" : \
GOTO 3313460
VROWS=MATCHS
FOR VCOL%=2 TO 3 '
PRINT "WHAT STATE DO YOU WANT TO BE IN WHEN ";
PRINT VARLISTS (VROWS,NCOLS%) ;"=";VARLISTS (VROWS,VCOL%);"?"
PRINT "PRESS RETURN IF STATE WILL VARY"
INPUT LINE TEMPS
IF TEMP$=NULLS THEN GOTO 33540
MATCHS=0OFFy REM VALIDATE STATE NAME
FOR DROW$=1 TO NR.STATES%
IF DIAGRAMS (DROWS ,NCOL%)=TEMPS THEN \
MATCHS=DROW% -
NEXT DROWS
IF MATCHS$=0FF% THEN \
PRINT "#%*".TEMPS;" IS NOT A VALID STATE" :\
GOTO 334¢¢
MASKS%= (2" (NR.VARS%+1-VROWS)) /2
FOR VAL.LOOPg=1 TO 2°NR,.VARS%
MATCHY=0FF%
VECTORS=VAL.LOOPS-1

——

c-6

g 3

s p oy

n

RESULTS$=VECTORS AND MASKS$
IF (RESULTS=g8 AND VCOL%=2) OR (RESULT$<>@ AND VCOL%=3) THEN \
DCOLE=VECTORS+2 : \
MATCH%=0ON%
FOR DROWS$=1 TO NR.STATES%
IF (MATCH3$=0ON%) AND (DIAGRAMS (DROW%,DCOL%)<>NULLS) AND \
(DIAGRAMS (DROWS ,DCOLS%) <>TEMPS) THEN \
PRINT "#***CONFLICTING GENERAL VARIABLE ALREADY "; : \
PRINT "DEFINED FOR "; : \
PRINT DIAGRAMS (DROWS,NCOLS$) ;" VECTOR"; VECTORS
IF (MATCH$=0ON%) AND {(DIAGRAMS (DROWS,DCOL%)=NULLS) THEN \
DIAGRAMS (DROWS ,DCOL%) =TEMPS
NEXT DROWS%
NEXT VAL.LOOPY
33508 NEXT VCOLS%
PRINT “"MORE GENERAL INPUT VARIABLES? (Y/N)"
INPUT TEMPS
IF TEMPS$="Y" THEN GOTO 33300

34@00 REM#***********GET NEXT STATE FOR EACH VECTOR*t***t*********i********
. PRINT SCREEN.CLEARS
: PRINT "THE NEXT SERIES OF QUESTIONS WILL BE REPEATED FOR EACH STATE."
i FOR DROW$=1 TO NR.STATESS
DCOL%=2
PRINT
PRINT "——mecmee—e START STATE DEFINITION-——e—ece—ea- "
PRINT
PRINT "YOU ARE IN THE ";DIAGRAMS (DROWS$,NCOL%);" STATE"
PRINT "ARE THERE ANY GENERAL INPUT VARIABLES FOR THIS STATE? (Y/N)"
INPUT TEMPS '
IF TEMPS="N" THEN GOTO 343040 ‘
34100 PRINT "WHICH VARIABLE?" .
INPUT LINE TEMPS !
IF TEMPS$=NULLS THEN GOTO 34300
MATCH$=0FF$ REM CHECK FOR VALID VARIABLE |
FOR VROW%=1 TO NR.VARS%
IF VARLISTS (VROWS,NCOL%)=TEMPS THEN MATCH%=VROWS
NEXT VROWS
IF MATCH%=OFF$ THEN \
PRINT "##%".TEMPS;" IS NOT A VALID VARIABLE" : \

GOTO 3410d@
VROW$=MATCHS
FOR VCOL%=2 TO 3
34200 PRINT "WHAT STATE DO YOU WANT TO BE IN WHEN *;
PRINT VARLISTS (VROWS,NCOL%);"="; VARLISTS (VROWS,VCOL%) ;"?"
PRINT "PRESS RETURN IF STATE WILL VARY"
34210 INPUT LINE TEMPS
IF TEMP$=NULL$ THEN GOTO 34259
MATCHY=0FF% REM CHECK FOR VALID STATE NAME

FOR DROW1%=1 TO NR.STATES%
IF DIAGRAMS (DROW1%,NCOL%)=TEMPS THEN \
MATCH$=0N$
NEXT DROW1%
IF MATCHY=OFF$ THEN \ 1
PRINT “##%".TEMPS;" IS NOT A VALID STATE, "; :\

c-7

PRINT “"RE~ENTER THE STATE NAME" :\
GOTO 34219
MASKS$= (2" (NR.VARS$+1-VROWS)) /2
FOR VAL.LOOPS=1 TO 2°NR.VARS$%
MATCHY=OFF%
VECTORS=VAL.LOOP%-1
RESULT$=VECTORY AND MASKS$ -
IF (RESULT%=3 AND VCOL%=2) OR (RESULT%<>@ AND VCOL$=3) \
THEN \
MATCHS=0ONS$:\
DCOL1%=VECTOR®+2
IF (MATCH%$=0ON%) AND (DIAGRAMS (DROWS,DCOL1%)=NULLS) THEN \
DIAGRAMS (DROWS% ,DCOL1%) =TEMPS
NEXT VAL.LOOP%
34250 NEXT VCOL%
PRINT "MORE GENERAL VARIABLES FOR THIS STATE? (Y/N)"
INPUT TEMPS
IF TEMPS$="Y" THEN GOTO 34100

34300 FOR VAL.LOOP%=1 TO 2°NR.VARS%
IF DIAGRAMS (DROWS,DCOL%) <>NULLS THEN GOTO 34500
VECTORS=VAL.LOOPY-1
MASK®= (2"NR.VARS%) /2 REM INITIALIZE VECTOR BIT MASK
REM E.G. 140,010,001
PRINT
PRINT "YOU ARE IN THE ";DIAGRAMS (DROWS,NCOLS%);" STATE, ";
PRINT *VECTOR =";VECTORS
FOR VROW$=1 TO NR.VARS$S
RESULT$=VECTORS AND MASKS%
IF RESULTS = A THEN \
VCOL%=2 \
ELSE \ ’
VCOL%=3
MASK$=MASKS/2 REM RESET MASK FOR NEXT BIT POS
PRINT TAB(8) ; VARLISTS (VROWS,NCOLS) ;"=";
PRINT VARLISTS (VROWS,VCOLS%)

NEXT VROWS [
PRINT "WHAT STATE DO YOU WANT TO BE IN NEXT?"]

34400 INPUT STATE.NAMES]
MATCH=OFF% REM CHECK FOR VALID STATE NAME

FOR DROW13=1 TO NR.STATESS
IF DIAGRAMS (DROW1S$,NCOL$)=STATE.NAMES THEN \
MATCHS=ONS %
NEXT DROW1% %
IF MATCH3=OFF% THEN \
PRINT "##*";STATE.NAMES;" IS NOT A STATE, ";
PRINT "RE-ENTER THE STATE NAME® :\
GOTO 34404 -
DIAGRAMS (DROWS , DCOL%) =STATE. NAMES
34500 DCOL$=DCOL% + 1
NEXT VAL.LOOP%
NEXT DROWS

;

ARt A ciha ch st 4 i A

REM* # % #22 k2Rt hdddt 2 ¥ *2#PRINT THE STATE DIAGRAMS N hkdhhdehdrddhabddrdhdhhd

PRINT "DO YOU WANT TO DISPLAY THE STATE DIAGRAM? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 37090
IFP NR.STATESS > 7 THEN \
PRINT.LIMITS = 7 \
ELSE \
PRINT.LIMITS = NR.STATESS
PRINT SCREEN.CLEARS
REM PRINT DIAGRAM FOR STATES 1-7
PRINT
PRINT TAB(l) ; LEFTS$ (HYPHENSS,6) ;" *;
FOR DROWS=1 TO PRINT.LIMITS
PRINT LEFTS (HYPHENSS,10);
NEXT DROWS
TPOSS= (PRINT.LIMITS * 10) / 2
PRINT TAB(1l) ;" INPUT";TAB(TPOS%);"N E X T STATE"
TPOSS=10
PRINT "VECTOR";
FOR DROWS=1 TO PRINT.LIMITS
PRINT TAB(TPOSS) ; LEFTS ((DIAGRAMS (DROWs,1)) ,8);
TPOS$=TPOSY + 14
NEXT DROWS
PRINT TAB(1l) ; LEFTS (HYPHENSS,6) ;" "
FOR DROW$=1 TO PRINT.LIMIT%
PRINT LEFTS (HYPHENSS,10);
NEXT DROWS
FOR DCOL%=2 TO 2°NR.VARSS + 1
VECTORs$=DCOL% - 2
PRINT TAB(1l) ; VECTORS;
TPOS%=19
FOR DROW$=1 TO PRINT.LIMIT%
PRINT TAB(TPOS%) ; LEFTS ((DIAGRAMS (DROW%,DCOL%)),8);
TPOS$=TPOS% + 10
NEXT DROWS
NEXT DCOLS%
PRINT
PRINT
PRINT
REM PRINT DIAGRAM FOR STATES 8-MAX
IF NR.STATESS < 8 THEN GOTO 35990
PRINT.LIMIT%=NR.STATES%
PRINT TAB(l);LEFTS (HYPHENSS,6);")
FOR DROW$=8 TO PRINT.LIMITS%
PRINT LEFTS (HYPHENSS,19);
NEXT DROWS
TPOS%=((PRINT.LIMITY - 8) * 14) / 2
PRINT TAB(1l) ;" INPUT";TAB(TPOS%);"N E X T STATE"
TPOS3=14
PRINT "VECTOR";
FOR DROWS=8 TO PRINT.LIMITS%
PRINT TAB(TPOS%) ; LEFTS ((DIAGRAMS (DROWS,1)),8);
TPOS$=TPOS% + 10
NEXT DROWS
PRINT TAB(1l);LEFTS (HYPHENSS,6);" "3

c-9

R ey

AT A et e e

A, o, Wy

e e e——

359400

37800

37109

37500

390090

39850
39999

FOR DROW$=8 TO PRINT.LIMIT%
PRINT LEFTS (HYPHENSS,19);
NEXT DROWS
FOR DCOL%=2 TO 2°NR.VARSS + 1
VECTORS=DCOLS - 2
PRINT TAB(1) ; VECTORS;
TPOS%=19
FOR DROWS=8 TO PRINT.LIMITS
PRINT TAB(TPOSS) ; LEFTS ((DIAGRAMS (DROWs,DCOLs%)) ,8);
TPOS=TPOSS + 10
NEXT DROWS
NEXT DCOLS%
PRINT
PRINT
INPUT "PRESS RETURN TO CONTINUE";LINE TEMPS

REM**# 2 %2 ¥ *OPTION TO SAVE DIAGRAM ON DISK*A*wtadaddaddadthhhdbrisd
PRINT "DO YOU WANT TO SAVE THIS STATE DIAGRAM? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 3904¢
PRINT "ENTER THE FILE NAME FOR THIS STATE DIAGRAM"
INPUT DIAGRAM.FILE.NAMES
IF SIZE(DIAGRAM.FILE.NAMES)=0 THEN GOTO 37580
PRINT "DO YOU WANT TO REPLACE THE CURRENT " ;DIAGRAM.FILE.NAMES;
PRINT " FILE? (Y/N)"
INPUT TEMPS
IF TEMPSa"N" THEN GOTO 371d¢
CREATE DIAGRAM.FILE.NAMES AS 1
FOR DROW%=1 TO NR.STATESS

FOR DCOL%$=1 TO 2°NR.VARS%+1

PRINT #1; DIAGRAMS (DROWS,DCOLS)

NEXT DCOL%
NEXT DROWS
CLOSE 1

REMR Ak dra ik ka2 *WRAP-UP AND ERROR PROCESSING#*#**#Akskhknhhthhhrhaii
STATUS .MSGS="***STATE DIAGRAM COMPLETED"

BUILD.STATE%=0ON%

GOTO 39999

STATUS.MSGS="*#*yOy MUST DEFINE THE VARIABLES FIRST"

RETURN

C-10

REM#* 40000 - IDENTIFY SUBROUTINES hd «
REMA A At A A R A A R AN R AR R R RN A AR AR AR A AR AR AR AR A AR AR AR A AR R bbb
§ IF DEFINE.VARSY=0FFgs THEN GOTO 49000
. IF BUILD.STATE$=OFF% THEN GOTO 49449
! PRINT SCREEN.CLEARS
' PRINT
PRINT
PRINT TAB(25); "IDENTIFY SUBROUTINES"
PRINT
PRINT "WHAT IS THE FILE NAME OF THE SUBROUTINE LIBRARY?"
40100 INPUT SUBROUTINE.LIB.NAMES
IF SIZE(SUBROUTINE.LIB.NAMES)=¢ THEN \
PRINT "*##NO FILE FOR ";SUBROUTINE.LIB.NAMES :\
PRINT "RE-ENTER THE NAME OF THE SUBROUTINE LIBRARY" :\
GOTO 40100

' 40000 134 AR A RS AR A2 R R 22 2 R 2 R 2 2 22222 2 2222222222222 R Y22

- AV s %

A 2 R AQH. - g

40200 REM#*###4BUILD LIST OF LIBRARY SUBROUTINE LABELS**#*tatddhhiiahiis
OPEN SUBROUTINE.LIB.NAMES AS 1
SROWg=1
49300 READ #1; LINE SUB.LINES
IF END #1 THEN 40990
1 IF LEFTS(SUB.LINES,4)=SUB.HEADS THEN \ L
TEMPS=MIDS (SUB.LINES,S,31) :\ r

s SR~ o 1

TEMPS=LEN(TEMPS) - 1 :\
\ SUBIDS (SROWS) =LEFTS (TEMPS, TEMPS) :\ :
SROWS=SROWS + 1 :
IF SROWS=MAX.SUB.LABELSS THEN \ ‘

GOTO 49100 REM ABORT PROCESS
REM CONTINUE READING UNTIL END OF FILE y
GOTO 46340
40900 NR.SUB.LABELS$=SROW% |
CLOSE 1 !

41000 REM*2%#*2%#22*CORRELATE STATES WITH SUBROUTINES#**ktkhdskhhhhhkhhids
PRINT
PRINT "ENTER THE STATEMENT NUMBER TO BE CALLED FOR EACH OF THE ";
‘ PRINT "FOLLOWING STATES"
FOR IS1%=1 TO NR.STATESS]
PRINT i
ISSTATES=DIAGRAMS (IS1%,1) 5
41200 PRINT ISSTATES;" STATE SUBROUTINE"

INPUT ISLABELS
MATCH8=0FF% REM VALIDATE LABEL

FOR SROW$=1 TO NR.SUB.LABELSS
IF SUBIDS (SROWS)=ISLABELS THEN \
MATCHY=SROW$
NEXT SROWS
IF MATCHS=OFF% THEN \
PRINT "###",ISLABELS;" NOT ON ";SUBROUTINE.LIB.NAMES; :\
PRINT " LIBRARY" :\
GOTO 41240 _

Cc-11

e

P e TR ey

.“ I R e R A

B A i e

41500

42000

FOR IS2%=1 TO NR.STATES%
FOR IS3%=1 TO 2°NR.VARS%+1
IF DIAGRAMS (IS2%,IS3%)<>ISSTATES THEN GOTO 41500
LET JUMPS(IS2%,IS3%)=ISLABELS
NEXT IS3%
NEXT IS2%
NEXT ISls

REM#® 242422 k22 * 4 **PRINT SUBROUTINE DIAGRAMS #Rhhwahrhdthhhdhhhihhd
PRINT "DO YOU WANT TO PRINT THE SUBROUTINE STATE DIAGRAM? (Y/N)"
INPUT TEMPS
IF TEMPS="N" THEN GOTO 45069
IF NR.STATES% > 7 THEN \
PRINT.LIMITS=7 \
ELSE \
PRINT.LIMIT%=NR.STATESS
PRINT SCRAEN.CLEARS
REM PRINT DIAGRAM FOR STATES 1-7
PRINT
PRINT TAB(1l) ; LEFTS (HYPHENSS,6) ;" ";
FOR JROW%=1 TO PRINT.LIMITS%
PRINT LEFTS (HYPHENSS,14);
NEXT JROWS
TPOS%=(PRINT.LIMITS * 10) / 2
PRINT TAB(l);" ";TAB(TPOS%);"N E X T STATE"
TPOS3%=10
PRINT " INPUT";
FOR JROWS=1 TO PRINT.LIMIT%
PRINT TAB(TPOS%); LEFTS((DIAGRAMS (JROWS,1)),8);
TPOS%=TPOSY + 10
NEXT JROWS
TPOS%=10
PRINT TAB(l);"VECTOR";
FOR JROW$=]1 TO PRINT.LIMIT%
PRINT TAB(TPOSS%) ; LEFTS ((JUMPS (JROWS,1)),8);
TPOS%=TPOS% + 10
NEXT JROWS
PRINT TAB(1l) ; LEFTS (HYPHENSS,6) ;" "
FOR JROWS=1 TO PRINT.LIMIT%
PRINT LEFTS (HYPHENSS,19);
NEXT JROWS
FOR JCOL%=2 TO 2°"NR.VARSS% + 1
VECTOR%=JCOL% - 2
PRINT TAB(1l) ; VECTORS;
TPOS%=10
FOR JROW$=1 TO PRINT.LIMITS
PRINT TAB(TPOSS) ; LEFTS ((JUMPS (JROW%,JCOLS%)) ,8);
TPOS%=TPOS% + 10
NEXT JROWS
NEXT JCOLS
PRINT
PRINT
PRINT
REM PRINT DIAGRAM FOR STATES 8-MAX
IF NR.STATESS < 8 THEN GOTO 42904

-

C-12

S an B 20k, bt . oo.awd

—

|
I
|
T

42904
45000

499000

49100

49999

PRINT.LIMITS=NR.STATESS
PRINT TAB(1);LEFTS (HYPHENSS,R);" ";
FOR JROWS=S TO PRINT.LIMITS
PRINT LEFTS (HYPHENSS,10);
NEXT JROWS
TPOSS=((PRINT.LIMITS - 8) * 18) / 2
PRINT TAB(1l);" “";TAB(TPOS%);"N E XT S TA T E"
TPOS%=10
PRINT " INPUT";
FOR JROWS=8 TO PRINT.LIMIT%
PRINT TAB(TPOS%) ; LEFTS ((DIAGRAMS (JROWS,1)),8);
TPOSY=TPOSS + 10
NEXT JROWS
TPOS3=10
PRINT TAB(1);"VECTOR®;
FOR JROWS=8 TO PRINT.LIMITS
PRINT TAB(TPOS$);LEFTS ((JUMPS (JROWS,1)),8);
TPOSY=TPOSE + 10
NEXT JROWS
PRINT TAB(1);LEFTS (HYPHENSS,6);" ";
FOR JROWS=8 TO PRINT.LIMITS
PRINT LEFTS (HYPHENSS,10);
NEXT JROWS
FOR JCOL§=2 TO 2°NR.VARSS + 1
VECTOR$=JCOLY - 2
PRINT TAB(1);VECTORS;
TPOS%=10
FOR JROWS=8 TO PRINT.LIMITS
PRINT TAB(TPOS%) ; LEFTS ((JUMPS (JROWS ,JCOLS}),8) ;
TPOS=TPOSS + 10
NEXT JROWS
NEXT JCOLS$
PRINT
PRINT
INPUT "PRESS RETURN TO CONTINUE";LINE TEMPS

REM# AR dkad ettt * 2 WRAP-UP AND ERROR PROCESSING #*X*¥aaddkhhdtrtrrrarrthrd
IDENTIFY.SUBS8=0N%
STATUS .MSGS="***SUBROUTINE IDENTIFICATION COMPLETED"
GOTO 49999
STATUS.MSGS= \

"##*#YOU MUST DEFINE THE VARIABLES AND BUILD THE DIAGRAM FIRST"
GOTO 49999
STATUS .MSGS= \

"#*#T00 MANY LABELS ON SOURCE LIBRARY; CANNOT CONTINUE PROCESSING"
RETURN

- T pery

50000

58100

51000

52000

53009

53100

53500

54000

A LA AL A A2 RS a2 222222222 2 22 222 222222 222222332222 R0 22

REM* 50006 - CREATE SOURCE PROGRAM *
LR R R TR LR TR Ry R L Ry gy T R T R T

IF DEFINE.VARSA=OFFYy THEN GOTO S914¢0
IF BUILD.STATES=OFFs THEN GOTO 59140
IF IDENTIFY.SUBS$=OFF% THEN GOTO 591400

PRINT "WHAT IS THE NAME OF THE NEW SOURCE PROGRAM?*®

INPUT SOURCE.PROG.NAMES

IP SIZE(SOURCE.PROG.NAMES)=0 THEN GOTO S1908

PRINT "DO YOU WANT TO REPLACE THE CURRENT " ;SOURCE.PROG.NAMES;"? (Y/N)"
INPUT TEMPS

IF TEMPS="Y" THEN GOTO 510406

GOTO 50100

REM GET SKELETON PROGRAM DRIVER FILE AND CREATE SQURCE PROGRAM FILE
IF SIZE("SDPGMAIN.LIB")=@ THEN GOTO 59200

PRINT "PROCESSING...PLEASE DON'T INTERRUPT"

OPEN "SDPGMAIN.LIB" AS 1

CREATE SOURCE.PROG.NAMES AS 2

REM COPY DRIVER TO SOURCE FILE UNTIL INSERT FLAG FOUND IN DRIVER
READ #1; LINE SG.LINES
IF END #1 THEN 53000
IF LEFTS(SG.LINES,6) = "INSERT®" THEN \
SG.INSERT =VAL(MIDS(SG.LINES,7,1)) :\
ON SG.INSERT GOSUB 54009, 55900, 56008, 570680 :\
GOTO 524000 \

ELSE \
PRINT USING "&"; #2; SG.LINES :\
GOTO 52000

REM DRIVER ROUTINE COMPLETE; CONCATENATE IT WITH SUBROUTINES
OPEN SUBROUTINE.LIB.NAMES AS 3

READ #3; LINE SG.LINES

IF END #3 THEN 53500

REM INSERT LOGIC TO SCREEN FOR SPECIFIED SUBROUTINES

PRINT USING "&"; #2; SG.LINES

GOTO 53100

REM SOURCE PROGRAM GENERATION COMPLETE; CLOSE FILES AND TELL USER
PRINT USING "&"; #2; "END"

CLOSE 1

CLOSE 2

CLOSE 3

STATUS.MSGS="***SOURCE PROGRAM SAVED ON DISK AS " + SOURCE.PROG.NAMES
GOTO 59999

REM INSERT1 SUBROUTINE: PROGRAM HEADER DATA
PRINT USING "&"; #2; "REM * "4+SOURCE.PROG.NAMES
RETURN

C-14

PRSP

' 55000
' 55100
56000
Y
' 57800
* 59000
. 59100
59200
I 59999

P

REM INSERT 2 SUBROUTINE: VARIABLE INITIALIZATION
READ #1; LINE SG.LINES REM CURRENT.STATEg =
FOR SG.ROWS=1 TO NR.STATESS
IF DIAGRAMS (SG.ROWS,1)=INITIAL.PROG.STATES THEN \
SG.LINES=SG.LINES+JUMPS (SG.ROWS%,1) :\
GOTO 55100
NEXT SG.ROW%
PRINT USING “"&"; #2; SG.LINES
READ #1; LINE SG.LINES REM NR.STATES% =
SG.LINES = SG.LINES + STRS(NR.STATESS)
PRINT USING "&"; #2; SG.LINES
READ #1; LINE SG.LINES REM JUMP.TABLE.SIZE% =
SG.LINES = SG.LINES + STRS(2°"NR.VARS%+1)
PRINT USING "&"; #2; SG.LINES
RETURN

REM INSERT3 SUBROUTINE: JUMP TABLE INSERTION
PRINT USING "&"; #2; "REM STATE DIAGRAM TABLE"
REM INSERT REST OF DIAGRAM HERE

PRINT USING "&"; #2; "REM JUMP TABLE"
REM INSERT JUMP TABLE PRINTOUT HERE

REM INSERT DATA STATEMENTS WITH JUMP TABLE VALUES
PRINT USING "&"; #2; "REM JUMP TABLE VALUES"
FOR SG.ROW$=]1 TO NR.STATESS%
SG.LINES="DATA "
FOR SG.COL%=1 TO 2°NR.VARS%+1
SG.LINES=SG.LINES+JUMPS (SG.ROW%,SG.COL%) +","
IF LEN(SG.LINES)>75 THEN \
SG.LINES=LEFTS (SG.LINES, (LEN(SG.LINES)~-1)) :\
PRINT USING "&"; #2; SG.LINES : \
SG.LINES="DATA "
NEXT SG.COL%
SG.LINES=LEFTS (SG.LINES, (LEN(SG.LINES)-1)) REM STRIP LAST COMMA
PRINT USING "&"; #2; SG.LINES
NEXT SG.ROW%
RETURN

REM INSERT4 SUBROUTINE: GENERATE GOSUB DESTINATIONS
FOR SG.ROW$=1 TO NR.STATES%
5G.SUBS$=JUMPS (SG.ROWS, 1)
SG.LINES=" IF CURRENT.STATE®="+SG.SUBS+ \
" THEN GOSUB "+SG.SUBS
PRINT USING "&"; #2; SG.LINES
NEXT SG.ROWS
RETURN

REM **##2#*#**ERROR PROCESSING ROUTINESHR®ARRARAR AN AR AR kAR AR
STATUS.MSGS="***YQU MUST COMPLETE THE FIRST 3 STEPS FIRST"

GOTO 59999)

STATUS .MSG$="#*+FILE SDPGMAIN.LIB IS MISSING; CANNOT CREATE PROGRAM"
GOTO 59999

RETURN

C-15

=
g)
‘Y

[S—

e e e g e mmpp——— -

90009

99004a

END

I3 LA AR A AL A AL AR 2 A 2222222222 222232 222 222 222 X2 22222 222X 2

9¢000 - DISPLAY MASTER MENU INSTRUCTIONS hd
A2 R R I T L P T R R R R R YT Y Y T Y

REM*

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
RETURN

“DEFINE VARIABLES"
-]

TAB(8) ; "THIS FUNCTION WILL PROMPT YOU FOR THE NAME OF EACH *;

"STATE VARIABLE."

TAB(8) ;*"YOU WILL ALSO BE ASKED TO SPECIFY THE MEANING OF ";

"EACH VALUE THE"

TAB(8) ; "VARIABLE CAN TAKE (@ AND 1). EXAMPLE: MASTER *;

"SWITCH, 9=0FF, 1=ON."
"BUILD STATE DIAGRAM"
" L]

TAB(8) ; "THIS FUNCTION WILL PROMPT YOU FOR THE NAME OF EACH *;

"STATE IN YOUR”"

TAB(8) ; "PROGRAM. FOR EACH STATE YOU DEFINE, YOU WILL BE ";

"ASKED TO SPECIFY"

TAB(8); “WHAT ACTION IS TO BE TAKEN (I.E., THE NEXT STATE) ";

"FOR EACH COMBINATION"
TAB(8);
"IDENTIFY SUBROUTINES"
n "

"OF THE STATE VARIABLES"

TAB(8) ;"THIS FUNCTION WILL PROMPT YOU FOR THE IDENTIFIER OF ";

"THE SUBROUTINE"
"WHICH HAVE ALREADY"

|
{
|
TAB(8) ; "ASSOCIATED WITH EACH STATE. THESE ARE SUBROUTINES *; ;

TAB(8) ; "BEEN CODED AND PLACED ON A SUBROUTINE LIBRARY."

"CREATE SOURCE PROGRAM

TAB(8) ; "THIS FUNCTION USES YOUR SUBROUTINE LIBRARY AND THE ";

"TABLES PRODUCED BY"

TAB(8) ; "THE PREVIOUS FUNCTIONS TO GENERATE SOURCE CODE FOR "; !

“YOUR PROGRAM."

"PRESS RETURN TO CONTINUE";LINE TEMP1$

REMAAX R AR ARRRRRRRARARNEARANARREAA N AR RRART AR AR R AR RN R

PROGRAM SHUTDOWN *
REMA AR R AR AR AR R R R AR R AR RN R AR RN R AR R R RR AN AR AN R AR R AR RAANN AR RS

REM*

STOP

c-16

e g

. -~ —

l APPENDIX D
SKELETON PROGRAM DRIVER USED TO GENERATE PROGRAMS
' REM AT eI IR R I A R L L T E T T L R -
INSERT1 (USER PROGRAM NAME)
' REM 22T T LS R R Y S R T Ry R T P)
REM NEEDED FOR SIMULATION, REMOVE WHEN VECTOR INPUTS CAN BE READ
STATE.VECTORS=9
l INPUT "PLEASE HIT RETURN TO START PROGRAM SIMULATION®; LINE TEMPS
RANDOMIZE
REM THESE VARIABLES ARE SET TO ACTUAL VALUES DURING PROGRAM GENERATION
l INSERT2 (INITIAL VARIABLE VALUES)
CURRENT.STATES=
NR.STATES%=
] JUMP.TABLE.SIZE%=
1
REM DATA FOR THE JUMP TABLE IS CREATED DURING SOURCE PROGRAM GENERATION
REM AND THEN READ INTO THE TABLE AT THE START OF THE PROGRAM RUN i
DIM JUMP.TABLES (NR.STATES% ,JUMP. TABLE.SIZE%) :
FOR PDX1%=1 TO NR.STATESS !
FOR PDX2%=1 TO JUMP.TABLE.SIZE%
READ JUMP.TABLES (PDX1%,PDX2%)
NEXT PDX2%
NEXT PDX1$%
INSERT3 (JUMP TABLE DATA)
!
REM MAIN PROGRAM LOOP
REM CHECK STATE VECTOR VALUE RANGE; STOP PROGRAM IF INVALID !
100 IF STATE.VECTORS < & OR STATE.VECTOR% > JUMP.TABLE.SIZE% - 2 THEN \ !

PRINT "STATE VECTOR OUT OF RANGE" :\

PRINT TAB(S5);"VALUE: ";STATE.VECTOR%;" SET BY: ";CURRENT.STATES% :\
GOTO 199 :\

REM STOP PROGRAM RUN

REM SEARCH JUMP TABLE TO DETERMINE NEXT STATE, BASED ON CURRENT STATE '
REM AND STATE VECTOR
FOR PDX1%=1 TO NR.STATES%
IF JUMP.TABLES (PDX1%,1) = CURRENT.STATES THEN \
CURRENT.STATES = JUMP,TABLE% (PDX13%,STATE.VECTOR%+2) :\

PDX1%=NR.STATESS
NEXT PDX1$% !
REM CALL NEXT STATE |
INSERT4 (SUBROUTINE CALLS FOR EACH STATE)
REM ANALYZE STATE VECTOR (SIMULATED BY SUBROUTINES WHICH SET X%)
STATE.VECTORS=X%
*- REM RESUME MAIN PROGRAM LOOP
: GOTO 100

1 D-1 ‘ .3

REM END OF PROGRAM (WILL NEVER STOP UNLESS SUBROUTINE EXECUTES STOP
REM OR INVALID STATE VECTOR IS DETECTED)
199 STOP

L
l APPENDIX E
PROGRAM CREATED BY STATE DIAGRAM PROGRAM GENERATOR
l REM (2222222222222 XXX X222 2222222 RZERRYRERY YR T
, REM * EXAMPLE.BAS ,
' REM (2222222 XXX XXX R R RX XY EX RSS2 EEE RS ERESSEZSR XYY 2R T ¥
[
1 REM NEEDED FOR SIMULATION, REMOVE WHEN VECTOR INPUTS CAN BE READ
STATE.VECTORS =@
' INPUT "PLEASE HIT RETURN TO START PROGRAM SIMULATION"; LINE TEMPS
RANDOMIZE i
4
& l REM THESE VARIABLES ARE SET TO ACTUAL VALUES DURING PROGRAM GENERATION ;
CURRENT.STATES=1300 ¢
NR.STATESS=4 ¥
l JUMP.TABLE.SIZES=65 $
REM DATA FOR THE JUMP TABLE IS CREATED DURING SOURCE PROGRAM GENERATION ;
] REM AND THEN READ INTO THE TABLE AT THE START OF THE PROGRAM RUN '
‘ DIM JUMP.TABLES (NR.STATESS,JUMP. TABLE.SIZE%) ;
B FOR PDX1%=1 TO NR.STATESS F
; FOR PDX2%=1 TO JUMP.TABLE.SIZE%
: 1 READ JUMP.TABLES (PDX1%,PDX2%) t
; NEXT PDX2%
NEXT PDX1% '
1 REM STATE DIAGRAM TABLE g
» REM JUMP TABLE {
REM JUMP TABLE VALUES '
DATA 1000,1000,1000,1009,1000,10006,1000,1000,1000,1000,1007,10060,1000,1000 *
. DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1060,1000,1007,1000,1000,10060,2000,1000,2000,1000,2000,10060,2000 |
. DATA 1000,2000,1060,2000,10006,2000,1000,20040,1000,2000,1000,2000,1000 ‘
DATA 2000,1000,2000,10006,2000,1000,2000,1000,2000,1006,2000,1000 ;
. DATA 20060,1000,1000,10006,1000,1000,1000,1064,1000,1000,1000,1000,10004,1000 A
DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
- DATA 10006,1000,1000,1000,1000,10606,2340,1000,2000,1000,3004,1000,3000 i
DATA 10006,2000,1000,2006,10600,3000,1000,3000,1000,2000,1000,2000,1000 i
DATA 3000,1000,300@,1000,2000,1000,20004,1000,3000,1000,3600,1000
DATA 3006,1000,1008,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
DATA 1000,1000,1000,1000,1000,1000,1000,1000,100¢,1000,1000,1000,1000
DATA 1006,1000,1000,1000,1000,1000,2000,1000,2000,1000,3000,1000,4000
DATA 1000,200a,1000,2000,1000,3000,1000,4000,1000,2000,1000,2000,1000
- DATA 3000,1000,4000,1000,2000,1000,2000,1000,3000,1000,4000,1000
DATA 4006,1000,1000,1000,1000,1000,1000,1000,1000,1004,1000,100¢,1000,1000
‘" DATA 1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000
.. DATA 1000,1000,1000,1000,10006,1000,2000,1000,2000,1000,2000,1000,2000
" DATA 1600,2000,1000,2000,1000,3004,1000,4000,1000,2000,1000,2000,1000
.. DATA 2000,1000,2000,1000,2000,1400,2000,1000,2007,1000,2000,1000
[;

REM MAIN PROGRAM LOOP

REM CHECK STATE VECTOR VALUE RANGE; STOP PROGRAM IF INVALID

100 IF STATE.VECTORS < 8 OR STATE.VECTOR% > JUMP.TABLE.SIZE% - 2 THEN \
PRINT “STATE VECTOR OUT OF RANGE™ :\
PRINT TAB(S) ;"VALUE: ";STATE.VECTORY;" SET BY: ";CURRENT.STATE% :\
GOTO 199 :\
REM STOP PROGRAM RUN

REM SEARCH JUMP TABLE TO DETERMINE NEXT STATE, BASED ON CURRENT STATE
REM AND STATE VECTOR
FOR PDX1%=1 TO NR.STATES%

IF JUMP.TABLES (PDX1%,1) = CURRENT.STATE% THEN \
CURRENT.STATES = JUMP.TABLES% (PDX1%,STATE.VECTOR%+2) :\
PDX1%=NR.STATESS

NEXT PDX1ls%

REM CALL NEXT STATE
IF CURRENT.STATE%=10¢9 THEN GOSUB 1000
IF CURRENT.STATE%=20¢08 THEN GOSUB 2000
IF CURRENT.STATEx=300¢ THEN GOSUB 3000
IF CURRENT.STATE%$=4090d THEN GOSUB 4000

REM ANALYZE STATE VECTOR (SIMULATED BY SUBROUTINES WHICH SET X%)
STATE.VECTOR$=X3%

REM RESUME MAIN PROGRAM LOOP
GOTO 140

REM END OF PROGRAM (WILL NEVER STOP UNLESS SUBROUTINE EXECUTES STOP

REM OR INVALID STATE VECTOR IS DETECTED)

199 sTOP

REM$1000

1000 REMA AR ket A A AR R AR AR AR AR RN AR AR BRI AR AR RN R AR R AR AR R AR AR A RT AR
REM* TEST SUBROUTINE 10000
o R AL T TR TR R T T PR AT S I R T Y
X%=INTS (RND*107)

IF X3 < @ OR X% > 63 THEN GOTO 1800
PRINT "SUBROUTINE 1046, VECTOR =";X%

RETURN

REM$2000

2000 REME A AR R A AR AR R AR AR AR R R AR R RN R RN R RN R RN AR AR R AR A h kbR knd
REM* TEST SUBROUTINE 20000
REM* AR AR N R AR R R R RN R RN R R AR RN RN RN AR AR AN RN RN A RN AR AR RN R h
X8$=INT% (RND*109)

IF X8 < 0 OR X% > 63 THEN GOTO 2000
PRINT "SUBROUTINE 2008, VECTOR =";X%

RETURN

REM#3000

3000 REMAA SR AR AR AR AR AR R R RN R R R RN RN R AN RR AR AR ANANR AR AR AR AR RN RN d
REM#* TEST SUBROUTINE 3400
REMA AR AR R R R AR AR AR R AR AR AR RN AR AR R R RN RN R AR N AR AR AR RS R AN N R R®
X8=INTS (RND*1090)

IF X% < @ OR X% > A3 THEN GOTO 34¢0

E-2

SEONREL LN

gyt 4om o % il

e WY . R 7

. PRINT "SUBROUTINE 3006, VECTOR =";X$%

sTop
RETURN

REM$4000

4000 Rg"t****i**fii*tii*itﬁ*tt***************tt***ti****ttt*i*i*****ﬁ
REM* TEST SUBROUTINE 44000
RE"Q*ttttt*ti*i*.*ititii**i*i***t*******t****t**********Q*******

l X$=INTS (RND*100)

IF X% < @ OR Xt > 63 THEN GOTO 4006

PRINT "SUBROUTINE 40dd, VECTOR =";X%
RETURN
l END

& b [P —— g

et §

Y

APPENDIX F

LIST OF PUBLICATIONS AND TECHNICAL REPORTS

"Research Directions in Multi-Micros"; Wrightsville Beach, North
Carolina, May 1981

"Software Methodology for Microprocessors”; IECON Proceedings,
Palo Alto, California, October 1982; IEEE Southcon, Atlanta,
Georgia, January 1983

LIST OF SCIENTIFIC PERSONNEL

G. Victor Wintriss
Jeannine Wolf

Dr. Michael Andrews
Nicolas Panos :
Andrew Ash }

